Candidate Name	Cent	re Nu	mber	•	C	andid	ate N	lumb	er

GCSE COMBINED SCIENCE

COMPONENT 2

Concepts in Chemistry

HIGHER TIER

SAMPLE PAPER

(1 hour 45 minutes)

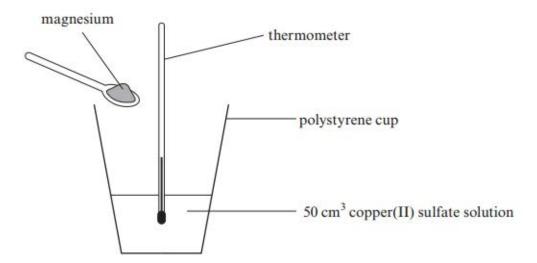
For Ex	aminer's us	e only
Question	Maximum	Mark
	Mark	Awarded
1	12	
2	11	
3	9	
4	7	
5	16	
6	9	
7	20	
8	6	
Total	90	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

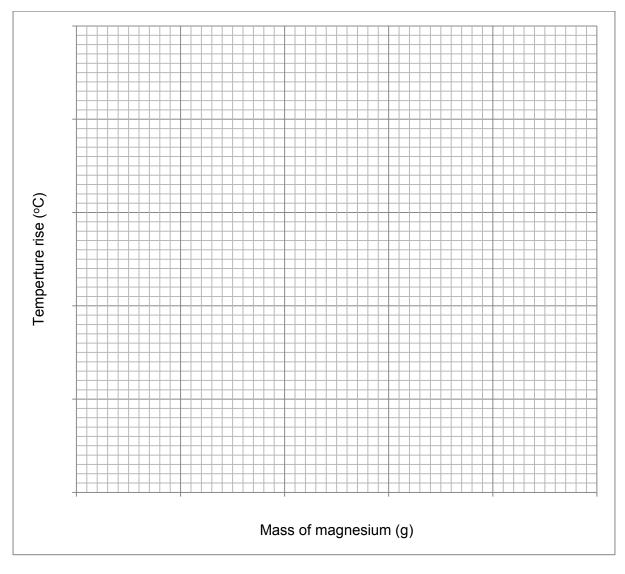

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question 8.

Answer all questions

1. Four pupils investigated the temperature change which occurred when powdered magnesium was added to 50 cm³ of copper(II) sulfate solution in a polystyrene cup.



- In the first experiment, each pupil weighed 0.2 g of magnesium.
- 50 cm³ of copper(II) sulfate solution was then added to a polystyrene cup and the temperature of the solution recorded.
- Magnesium was then added to the solution, while the polystyrene cup was swirled. The maximum temperature rise was recorded.
- The experiment was repeated using 0.4, 0.6, 0.8 and 1.0 g of magnesium powder with new 50 cm³ of copper(II) sulfate solution each time.

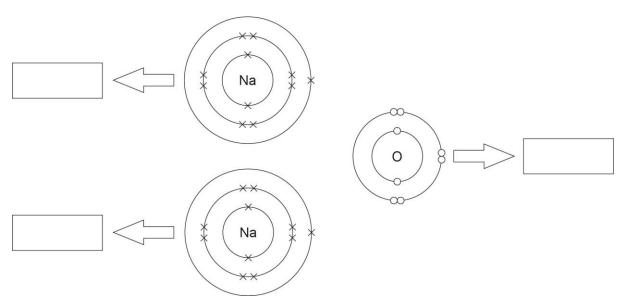
The table shows the results recorded.

Mass of	Maximum temperature rise (°C)							
powdered magnesium (g)	Pupil A	Pupil B	Pupil C	Pupil D	Mean			
0.2	3.5	3.5	3.7	3.7	3.6			
0.4	6.0	5.9	6.1	6.0	6.0			
0.6	7.8	8.0	8.2	8.0	8.0			
0.8	9.1	9.0	3.0	8.9	9.0			
1.0	8.8	9.1	8.9	9.2	9.0			

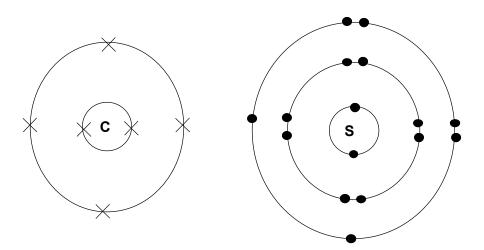
(a)	(i)	Circle the anomalous result not used in calculating one of the	e mean
		temperature rises.	[1]
	(ii)	Suggest one possible cause for this anomalous result.	[1]
(b)	(i)	On the grid below, plot the mean temperature rise against the	mass of

(ii)	Find the smallest mass of magnesium needed to react with all of	the
	copper(II) sulfate. Give a reason for your answer.	[1]

(c) In north Wales, there is a large copper mine called Parys Mountain. Unwanted rock from the mining process has been dumped forming waste tips. As rainwater passed through the waste tips it dissolved copper salts such as copper(II) sulfate. This water filled pits.


In the 18th century scrap iron was placed into the water and after a few months the pits were drained and copper-rich sludge was collected.

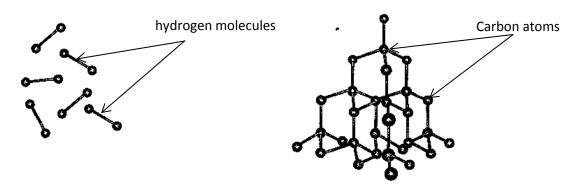
	(i)	Explain the reaction taking place in the pits.	[2]
	(ii)	Write the word equation for the reaction taking place.	[2]
		+ + +	
d)		lar reaction takes place between copper and silver nitrate. One of the cts formed is copper(II) nitrate, $Cu(NO_3)_2$.	;
	Write t	the balanced symbol equation for this reaction.	[2]
		+++	


2. (a) Sodium reacts with oxygen to form sodium oxide.

The diagram below can be used to show the electronic changes that occur as sodium oxide is formed.

- (i) **Draw arrows on the diagram** to show the movement of electrons that leads to the formation of ions. [1]
- (ii) Write in the boxes, the electron configurations of the sodium and oxide ions that are formed. Include the charges on these ions. [2]
- (iii) Explain why the ions become joined together. [2]

(iv) The electronic configuration of carbon and sulfur are shown below.


Circle the letter **A**, **B**, **C** or **D** next to the correct statement about the compound formed between carbon and sulfur.

[1]

- A Electrons are transferred from carbon to sulfur to form a covalent compound with the formula CS₂.
- **B** Electrons are shared between carbon and sulfur to form a covalent compound with the formula CS₂.
- **C** Electrons are transferred from carbon to sulfur to form a covalent compound with the formula CS.
- **D** Electrons are shared between carbon and sulfur to form a covalent compound with the formula CS.

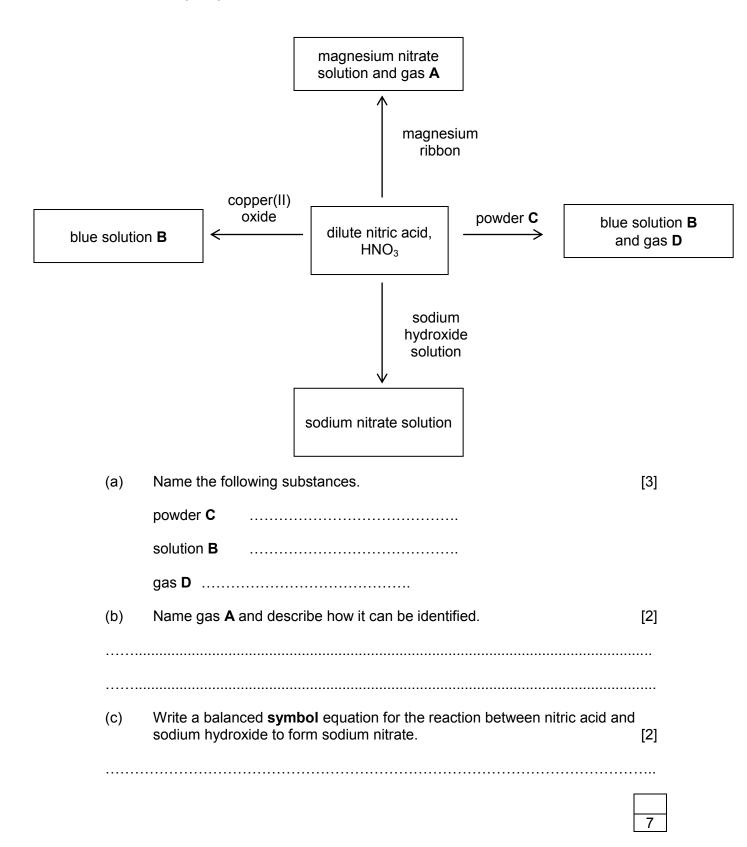
(b)	Using the electronic structures given, draw a dot and cross diagram to sho	W
	the bonding in a molecule of water, H ₂ O.	[2]

(c) The following diagrams show the structures of hydrogen and diamond, which is a form of carbon.

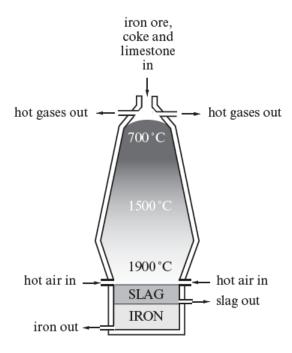
[3]

11

3. The following table contains information about the number of particles contained within atoms and ions **A** - **G**.


A, B, C, D, E, F and G are not chemical symbols.

	A	В	С	D	E	F	G
Number of electrons	8	10	9	10	10	11	10
Number of neutrons	10	10	10	10	12	12	12
Number of protons	8	8	9	10	10	11	11


(a)	State th	ne atomic r	number of	C				[1]
(b)					o which gro plain your		eriod of the	[3]
	Group			Period				
(c)	Choose	e a letter A	- G which	represent	ts:			[2]
	a positi	ve ion						
	a negat	tive ion						
(d)	Give th	e letter A -	G which i	represents	an atom/id	on with a m	nass numb	er of 20. [1]
(e)		hat is mea ify your an	•	term isotop	oe. Use info	ormation fr	om the tab	le to [2]
•••••								

4. The following diagram shows some reactions of dilute nitric acid.

5. (a) Iron can be extracted from its ore in the blast furnace.

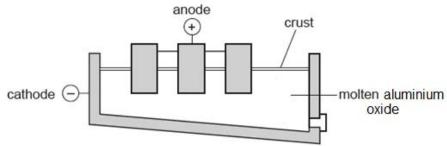
In extracting the iron from its ore, the following reactions take place inside the furnace.

Reaction 1 $C + O_2 \rightarrow CO_2$

Reaction 2 $CO_2 + C \rightarrow 2CO$

Reaction 3 $2Fe_2O_3 + 3CO \rightarrow 4Fe + 3CO_2$

Reaction 4 $CaCO_3 \rightarrow CaO + CO_2$

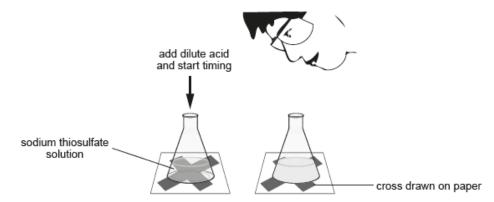

Reaction 5 CaO + SiO₂ \rightarrow CaSiO₃

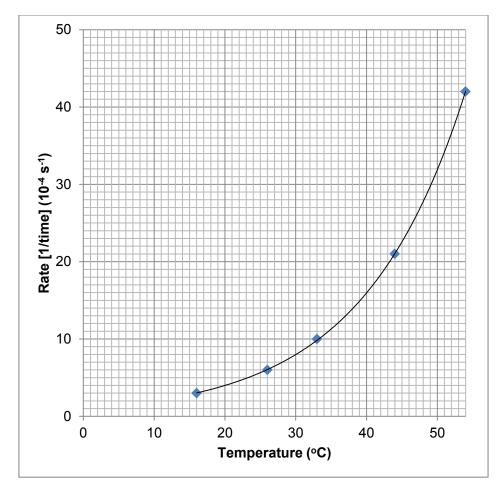
Explain the terms *reduction* and *neutralisation* with reference to suitable reactions occurring in the blast furnace. [5]

(ii) reduction
In your answer you need to refer to two reactions.

(ii) neutralisation
In your answer you need to refer to one reaction.

(b) Aluminium is obtained by the electrolysis of molten aluminium oxide.


(i)	Explain why aluminium is formed at the cathode. Include an electrode equation in your answer. [3]
(ii)	The equation below shows the overall reaction that takes place during electrolysis of aluminium oxide.
	$2Al_2O_3 \rightarrow 4Al + 3O_2$
	Aluminium oxide is obtained from the ore bauxite. Bauxite from one mine contains 45 % aluminium oxide. Calculate the maximum mass of aluminium that could be produced from 1.02×10^6 kg of this bauxite.
	[4]


mass = kg

e table below shows electrolysed to form		out three comp	ounds whic
Compound	Melting point (°C)	Solubility	
lead(II) chloride	501	insoluble	
sodium chloride	808	soluble	
lead(II) chloride	373	insoluble	
	udanta ta abtain a a	ample of chlorir	
eacher wanted her st lain which compoun			nts to use.

6. (a) The graph below shows how the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid changes with temperature.

The rate of reaction was measured by the 'disappearing cross'.

(i)	Account for the relationship shown in the graph using particle theory. [3]]
		-

	(ii)	Use the graph to find the time taken, in seconds, for the cross to disappear at 50 °C. Show your workings.	[2]
		time taken =seconds	
	(iii)	Use the graph to find the temperature increase that is needed to double the rate. <i>Show your reasoning</i> .	[2]
		temperature increase =°C	
(b)		acid can be manufactured industrially in a reaction involving a platinust. Explain why using the platinum catalyst makes the reaction	ım [2]
			9

7.	(a)	into	de oil is a mixture of hydrocarbon compounds. Crude oil can be separated simpler mixtures called fractions. Each fraction contains hydrocarbons of lar chain lengths.
		(i)	Explain how oil is separated into fractions. [2]
		(ii)	The C_{17} - C_{20} fraction contains a number of different alkanes. Give the formulae of an alkane found in this fraction. [1]
		 (iii)	The bar chart below shows the relative amounts of 'supply' and 'demand' for some hydrocarbon fractions.
			■ supply □ demand
			40
			35
			30
F	Percentage	: (%)	25
	supply ar emand for	nd	20
u	fraction		15
			10
			5
			C_{1} - C_{4} C_{5} - C_{8} C_{9} - C_{12} C_{13} - C_{16} C_{17} - C_{20} C_{21} - C_{24} C_{25} - C_{25}
			hydrocarbon fraction
			Explain how oil companies process crude oil to address the
			differences in supply and demand of each fraction. [3]

GCSE COMBINED SCIENCE Sample Assessment Materials 134

(b) Methane and propane are used as fuels.

The burning of methane in air can be represented by the following equation.

The relative energies of these bonds are given in the table below.

Bond	Bond energy (kJ)
C – H	413
O = O	498
O – H	464
C = O	805

Calculate the overall energy change for the reaction. State whether the reaction is exothermic or endothermic and give a reason for your answer. [4]

energy change =l	ΚJ

(c)	Prop	Propane is another fuel that burns in air.					
	(i)	A sample of propane contains 0.72 g of carbon and 0.16 g of hydrogen.					
		Use this information to show that the formula of propane is $C_3H_{8.}$	[3]				
	(ii)	Calculate how many molecules there are in 132 g of propane.	[3]				
		number of molecules =					
		number of molecules –					

(d) Polyester is produced from compounds formed from crude oil. Cotton is grown from plants.

The table below gives data for the complete life cycle assessment of jackets made from cotton and polyester.

Factor	Polyester per kg	Cotton per kg
energy used (MJ)	171.3	140.1
fuel (oil or gas) used (kg)	1.53	0
fertiliser used (kg)	0	467
sulfur dioxide emissions (g)	0.2	4.0

better for the environment because cotton comes from plants. Use information from the table to discuss whether Jacqueline's claim is correct.	[4]
	••••

Jacqueline claims that making jackets from cotton rather than polyester is

20

8.	Potassium chloride can be made by reacting an acid with an alkali.			
	Describe a laboratory method for making crystals of potassium chloride from a suitable acid and alkali. [6 QER]			
	Include a chemical equation in your answer.			

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br⁻
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI ⁻
Calcium	Ca ²⁺	Fluoride	F ⁻
Copper(II)	Cu ²⁺	Hydroxide	OH-
Hydrogen	H⁺	lodide	I ⁻
Iron(II)	Fe ²⁺	Nitrate	NO ₃
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li⁺	Sulfate	SO ₄ ²⁻
Magnesium	Mg ²⁺		·
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag [⁺]		
Sodium	Na [⁺]		
Zinc	Zn ²⁺		

Avogadro's number, $L = 6 \times 10^{23}$

